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RANDOM WALK THEORY APPLIED TO DAPHNIA MOTION
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The zooplankton Daphnia or “water flea” - one of the most common crustacean to be
found in freshwater - is subject to recent studies. It is known to perform vortex motions
under certain light conditions as well as more complex navigational tasks. Experimental
data show that Daphnia move with a preferred turning angle, what is of main interest
in this paper. The above-mentioned experimental fact is taken in order to derive a
Diffusion law for these types of motion. Deviations from the free diffusive behavior are
investigated, based on random walk theory.

Keywords: self-driven particles, enhanced diffusion

1. Introduction

Applying mathematical models to organisms goes back to the beginning of the 20th
century. Experimental investigation of animal dispersion started in the 1940s with
observing insects [1, 2]. Recent observations of animal motion include Daphnia [3]
(so called “water flea”), Copepods [4, 5] (the salt water analog), Desert Isopods [6]
and many other animals (e.g. in [7]).

Complex movement features like aggregation in groups or periodic behavior
can be modeled using Active Brownian particles – particles in a space dependent
potential with an energy depot, which can be converted into kinetic energy [8, 9]
– or self-propelled particles [10, 11], which are individually driven by a force with
fixed magnitude and an interaction potential. Both include friction. What has
been found in these type of models that diffusive behavior of the driven particles is
different from the normal one [9,12,13]. Observing single Daphnia in darkness [14],
thus reducing the potentials, reveal a nonuniform distribution of angles between
two successive steps (Fig. 1). In this work we want to neglect any interaction with
neighbors or external fields and focus on the influence of non uniformly distributed
turning angles. We will derive diffusion coefficients for Gaussian distribution of
turning angles and characterize between short time and long time behavior using a



persistent random walker.
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Fig 1. Experimental data for (single) Daphnia moving in darkness (taken from [14]). Rotational
direction wasn’t distinguished, thus we presume a left-right symmetrical distribution. A fit to a
Gaussian approximation has the mean 〈η〉 = 48◦ and variance σ = 36◦ and is shown as dashed
histogram.

2. The Daphnia as a Random Walker

About three short straight swim strokes per second give the Daphnia a velocity of
≈ 4−16mm

s . For having negative buoyancy their hops are directed slightly upwards
so we reduce the Daphnia to a (discrete) Random Walker in two dimensions with
λ ≈ 10

3 mm and τ ≈ 1
3 s (fixed step length and time interval). The ith displacement

vector can be given by:

~ri =
(

λ cos θi

λ sin θi

)
(1)

θi = θi−1 + ηi (2)

where θi is the angle between a fixed axis and the direction of motion. As mentioned
above, the turning angles ηi are not distributed uniformly but bell like with one
maximum at 30◦ and a very small local maximum at 150◦ (Fig. 1). The latter
might vanish in experimental uncertainty but interestingly enough the Copepods
show the same feature [5]. After n = t

τ steps the walker has a squared distance
from the point of start of:

~R2
n =

(
n∑

i=1

~ri

)2

. (3)
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Fig 2. Simulation for 104 Daphnia with Gaussian angular distribution (〈η〉 = 20◦,σ = 36◦).
Straight line represents the theoretical prediction by (8), the dashed line represents the asymptote
(9) and the circles show the simulated data.

Averaging over an ensemble of walkers we have:

〈
~R2

n

〉
=

〈
n∑

i=1

~ri

n∑

j=1

~rj

〉
=

n∑

i=1

〈~ri〉+ 2
n−1∑

i=1

n∑

j=1

〈~ri ∗ ~rj〉

= nλ2 + 2λ2
n−1∑

i=1

n∑

j>1

〈cos(θi − θj)〉 . (4)

With the angular correlation γ (f (η) as distribution function for η):

γ = 〈cos(θi − θi+1)〉 = 〈cos η〉 =
∫ π

−π

f(η) cos ηdη (5)

and presuming correlation only between successive steps we get

〈cos(θi − θi+2)〉 =
∫ π

−π

f(η)
∫ π

−π

f(η′) cos(η + η′)dη′dη

=
∫ π

−π

f(η)
∫ π

−π

f (η′) cos η cos η′dη′dη

= γ2 , (6)

since sine is an asymmetrical function. It can be shown as well, that

〈cos(θi − θi+s)〉 = γs . (7)
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So we can solve the sum in (4) and get a formula for the mean squared displace-
ment of a 2D correlated random walk like in [2] and [15] which was derived first by
Kareiva and Shigesada:

〈
~R2

n

〉
= λ2

(
n

1 + γ

1− γ
− 2γ

1− γn

(1− γ)2

)
. (8)

Values for a simulation of 104 walkers are presented in Fig. 2.

3. Diffusion

Since |γ| < 1 the second term on the right hand side of (8) is time independent for
large n:

lim
n→∞

〈
~R2

n

〉
= λ2

(
n

1 + γ

1− γ
− 2γ

(1− γ)2

)
. (9)

Therefore the diffusion in long times is normal, for short times anomalous. The
simulation (Fig. 2) shows a quick approach to the asymptotic limit. The diffusion
coefficient is (in real time and two spatial dimensions):

4 D =
1 + γ

1− γ

λ2

τ
. (10)

To check the validity of (8) and (9) a population of 104 random walkers with a
Gaussian angular distribution was simulated. Angular correlation for this type of
distributions will be evaluated in a later chapter. Fig. 2 shows the results. After
only a few steps the data approach the asymptote.

Looking at Eqs. (8) and (9) it can be seen that the second term in the sum can
be interpreted as the square of a characteristic length scale. If this length scale is
much smaller than the length scale of the process itself, Diffusion approximation
holds.

As can be seen from Eq. (5) γ vanishes if η is equally distributed. This corre-
sponds to the motion of a freely diffusing particle without any orientational prefer-
ences. Diffusion is enhanced if γ is in the range between 0 and 1. For example, this
is the case if η is Gaussian with a mean turning between 0 and Pi.

4. Crossing Over Time

Now, let’s find out, when the asymptote is reached or, to be more precise, when
does the graph of equation (8) cut a straight line parallel to (9)? The distance of the
two straight lines will be a fraction p of the absolute member e: With Dn := 1+γ

1−γ

and e := 2γ
(1−γ)2 we can rewrite (8) and require:

Dnn− e + eγn .= Dnn− e + ep

⇒ ncrossover = ln p
ln γ

(11)

To prove the formula a Daphnia population (of N individuals) is simulated S
times starting from the origin. Every simulation yields a crossover time (when〈
R2

n

〉
N

reaches the asymptote) to average over all simulations in the end. This has
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to be done for different γ, i.e. different angle distributions. Here again we use a
Gaussian distribution with a fixed variance (σ = 36◦) and the mean between 0 and
90◦. The consistency between theory and simulation (Fig. 3) is quite good, the step
like appearance comes from averaging over discrete time steps.
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Fig 3. Time of crossing over dependent on the angular correlation γ. Simulations done with Gaus-
sian distribution (variance = 36◦). The lines represent the prediction according to (3). (Circles:
p=0.2, N=1000, S=500; Squares: p=0.1, N=5000, S=1000; Diamonds: p=0.05, N=106, S=50000)

5. The angular Correlation

As we see, the angular correlation γ is crucial to calculate the time dependency of〈
~R2

n

〉
as well as other movement features. We’ll have a look at two different classes

of distributions, a set of two delta peaks and a Gaussian distribution.

5.1. Two Delta Peaks

A (left-right symmetrical) distribution of two delta functions on both sides is a very
simple representation of the two maxima observed in the biological experiment.
Calculation of γ is trivial:

f (η) =
1
2

[a δ(|η| − η1) + (1− a) δ(|η| − η2)]

γ =
∫ π

−π

f(η) cos η dη

= a cos η1 + (1− a) cos η2 . (12)

Here a controls the weight of the peaks at η1 and η2. Angular correlation and
diffusion coefficient for a ratio of 10:1 (a = 10

11 ) are shown in Fig. 4. This ratio
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Fig 4. Angular correlation (a) and diffusion coefficient (b) versus the position of two different
turning angles

reflects the values for the two peaks in the original experiment (Fig. 1). With the
larger peak fixed at 48◦ (as observed in the experiments) the position of the second
peak is crucial to the diffusion coefficient. With increasing η2 > η1 the enhanced
diffusive behavior is damped up to 40% in term s of the diffusion coefficient and up
to 30% in terms of the angular correlation.

5.2. Gaussian Distributions

Supposing again a symmetrical f (η) integration of (5) can be done over [0, π] with
a factor 2. So the distribution consists of a Gaussian with probability 1

2 on either
side of the ordinate.

‖f (η) ‖[−π,π] = 2 ‖f (η) ‖[0,π]

= 2
∫ π

0

exp

(
−(η − 〈η〉)2

2σ2

)
dη

= 2
√

π

2
σ

[
erf

(
π − 〈η〉√

2σ

)
+ erf

( 〈η〉√
2σ

)]
(13)

So we calculate

γ = 2 ‖f (η) ‖−1
[−π,π]

∫ π

0

exp

(
−(η − 〈η〉)2

2 σ2

)
cos (η) dη

= 2 ‖f (η) ‖−1
[−π,π]

1
2

i e−i〈η〉−σ2
2

√
π

2
σ

[
e2 i 〈η〉 erfi

(−i 〈η〉+ σ2

√
2 σ

)
− e2 i 〈η〉 erfi

(
i π − i 〈η〉+ σ2

√
2 σ

)
−

− erfi
(

i 〈η〉+ σ2

√
2 σ

)
+ erfi

(
i π + i 〈η〉+ σ2

√
2 σ

)]
, (14)
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Fig 5. (a): Angular correlation versus mean (〈η〉) and variance (σ) of a Gaussian distribution.
(b): Diffusion coefficient calculated from (10) and (15). The experimental values for the Daphnia
are indicated with an arrow at the following values: 〈η〉 = 0.84, σ = 0.63 and Dn = 3.1.

where erfi is the complex error function which relates to the normal error function
erf like erfi (z) = erf(iz)

i . With this, Eq. (13) and the substitutions b := 〈η〉+i σ2
√

2 σ
and

c := −π+〈η〉+i σ2
√

2 σ
equation (14) can be rewritten to:

γ (〈η〉 , σ) =
cos 〈η〉 · < [erf(b)− erf(c)]− sin 〈η〉 · = [erf(b)− erf(c)]

e
σ2
2

[
erf

(
π−〈η〉√

2σ

)
+ erf

(
〈η〉√
2σ

)] (15)

< and = denote the real and imaginary part and we have a real function for all 〈η〉
and σ. In Fig. 5(a) γ is drawn versus the parameters of a Gaussian distribution and
Fig. 5(b) shows the diffusion coefficient Dn = 1+γ

1−γ . For 〈η〉 = π/2 we have a γ = 0
and therefore Dn = 1, what is equivalent to free diffusion, and does not depend on
the standard deviation of the turning angle anymore.

6. Conclusion

In this paper the random motions of Daphnia have been investigated. These motions
were described by a random walk theory as in [3]. Due to the fact that the species
described above prefer motions into a certain direction (preferred turning angle) the
overall motion of a single Daphnia should deviate from the free diffusive behavior.
With the help of the approach of Kareiva and Shigesada [2] a Diffusion law
for species moving with preferred turning angle has been developed. It has been
found that the preference of an angle to turn in-between 0 and 90 degrees allows
the individuals to cover a certain area faster than with a normal/free random walk.
The effectiveness of searching for food is higher in this case compared to a search
strategy based on pure random motion. With the help of the derived diffusion
law the time which would be needed to be at every point of a given area could be
calculated. Let us give a short example here: This work is dedicated to Frank Moss
and his stimulating work on this field. That is why we would apply the formula
especially to something what he is related to. Let us assume that Franks office is
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about 30m2. Thinking that Frank is going to become a even bigger fan of Daphnia
he probably could fill his office with water to give more space to his lovely animals.
The question what occurs then, is: How long will a single Daphnia take to travel
over an area as big as Franks office is. The law given in this paper tells us it would
take about 40 hours to be with the same probability at every position of this office.

Furthermore the existence of a second peak in the angular distribution was
considered. Even, if this second peak is very small compared to the main peak it
has a crucial influence to the enhancement of the diffusion. The bigger the peak
the less is the deviation from the free diffusive behavior of the animals.
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